Intraosseous Radiofrequency Ablation System for Spinal Tumors

A specialized minimally invasive device designed to deliver targeted radiofrequency energy, effectively ablating spinal tumors while preserving surrounding healthy tissue and reducing procedural recovery time.

Spinal metastases and other osseous lesions present a challenging clinical scenario—pain, neurological compromise, and potential instability make effective treatment critical. This Intraosseous Radiofrequency Ablation (RFA) system offers a promising, minimally invasive technique for targeted destruction of tumor tissue within the vertebra. Utilizing a 17 G introducer needle, 5 Fr catheter, and a Thermo ablation probe with multi-level safety monitoring, the system delivers controlled ablation to destroy neoplastic cells while preserving patient safety.

Key Features

User-Friendly Touchscreen Display
  • Intuitive Interface: Operators can effortlessly select and fine-tune ablation parameters (e.g., temperature, power) while actively visualizing real-time feedback.
  • Probe Recognition with RFID: The system automatically identifies the catheter model and sets default parameters accordingly, streamlining setup.
  • Temperature & Power Output Tracking: Continual analysis prevents overheating or under-treatment, eliminating potential carbonization risks.
  • Warning System: Sound and light pulses signal high or low temperature and indicate the procedure’s standby operation time (up to 250 seconds).
  • No Carbonization: Maintains temperature in a defined range (80–110 °C) with max power at 40 W, enabling effective tissue necrosis while minimizing excessive heat spread.
  • Multi-Stage Approach: For more extensive lesions, multiple sequential ablations can be planned, safeguarding adjacent structures and nerves.
  • 17 G Introducer Needle + 5 Fr Introducer Catheter: Facilitates stable placement into the vertebral body under fluoroscopic or radioscopic imaging guidance.
  • Thermo Probe with Heating Element (1–2.5 mm diameter, 2–4 cm length): Allows the ablation zone to be tailored to the lesion size, ensuring thorough coverage and minimal healthy bone disruption.

Clinical Advantages & Applications

Spinal Metastases Management
  • Pain Relief: Targeted ablation of tumor tissue can reduce pain and restore some stability to compromised vertebrae.
  • Minimally Invasive: Often performed under sedation or local anesthesia, diminishing hospital stays and accelerating patient mobilization.
  • Lower Risk of Overheating: With regulated temperature control, surrounding bone and spinal cord are less prone to thermal injury.
  • Enhanced Synergy: Post-ablation, vertebral augmentation (e.g., cementoplasty) can further stabilize the spine if needed.
  • Radioscopic/Fluoroscopic Guidance: Ensures precise probe positioning and continuous observation of the ablation process, improving operator confidence and patient safety.
  • Controlled Approach: Suitable for metastatic disease in the vertebral body, pedicle, or accessory spinal regions.
  • No External Introducer: Single 17 G access route can be withdrawn promptly following ablation—helping reduce procedural complexity and infection risk.
  • Immediate Assessment: Intra- or post-procedure imaging can quickly confirm ablation zone coverage, providing data for possible second-round ablation if needed.