Sistema de ablação por radiofrequência intra-óssea para tumores da coluna vertebral

Um dispositivo especializado minimamente invasivo concebido para fornecer energia de radiofrequência direcionada, ablacionando eficazmente os tumores da coluna vertebral, preservando o tecido saudável circundante e reduzindo o tempo de recuperação do procedimento.

Spinal metastases e outros osseous lesions present a challenging clinical scenario—pain, neurological compromise, and potential instability make effective treatment critical. This Intraosseous Radiofrequency Ablation (RFA) system offers a promising, minimamente invasivo technique for direcionado destruction of tumor tissue within the vertebra. Utilizing a 17 G introducer needle, 5 Fr catheter, and a Thermo ablation probe with multi-level safety monitoring, the system delivers controlado ablation to destroy neoplastic cells while preserving patient safety.

Caraterísticas principais

User-Friendly Touchscreen Display
  • Intuitive Interface: Operators can effortlessly select and fine-tune ablation parameters (e.g., temperature, power) while actively visualizing real-time feedback.
  • Probe Recognition with RFID: The system automatically identifies the catheter model and sets default parameters accordingly, streamlining setup.
  • Temperature & Power Output Tracking: Continual analysis prevents overheating or under-treatment, eliminating potential carbonization risks.
  • Warning System: Sound and light pulses signal high or low temperature and indicate the procedure’s standby operation time (up to 250 seconds).
  • No Carbonization: Maintains temperature in a defined range (80–110 °C) with max power at 40 W, enabling efetivo tissue necrosis while minimizing excessive heat spread.
  • Multi-Stage Approach: For more extensive lesions, multiple sequential ablations can be planned, safeguarding adjacent structures and nerves.
  • 17 G Introducer Needle + 5 Fr Introducer Catheter: Facilitates stable placement into the vertebral body under fluoroscopic ou radioscopic imaging guidance.
  • Thermo Probe with Heating Element (1–2.5 mm diameter, 2–4 cm length): Allows the ablation zone to be tailored to the lesion size, ensuring thorough coverage and minimal healthy bone disruption.
  • Intuitive Interface: Operators can effortlessly select and fine-tune ablation parameters (e.g., temperature, power) while actively visualizing real-time feedback.
  • Probe Recognition with RFID: The system automatically identifies the catheter model and sets default parameters accordingly, streamlining setup.
  • Temperature & Power Output Tracking: Continual analysis prevents overheating or under-treatment, eliminating potential carbonization risks.
  • Warning System: Sound and light pulses signal high or low temperature and indicate the procedure’s standby operation time (up to 250 seconds).
  • No Carbonization: Maintains temperature in a defined range (80–110 °C) with max power at 40 W, enabling efetivo tissue necrosis while minimizing excessive heat spread.
  • Multi-Stage Approach: For more extensive lesions, multiple sequential ablations can be planned, safeguarding adjacent structures and nerves.
  • 17 G Introducer Needle + 5 Fr Introducer Catheter: Facilitates stable placement into the vertebral body under fluoroscopic ou radioscopic imaging guidance.
  • Thermo Probe with Heating Element (1–2.5 mm diameter, 2–4 cm length): Allows the ablation zone to be tailored to the lesion size, ensuring thorough coverage and minimal healthy bone disruption.

Vantagens e aplicações clínicas

Spinal Metastases Management
  • Pain Relief: Targeted ablation of tumor tissue can reduce pain and restore some stability to compromised vertebrae.
  • Minimally Invasive: Often performed under sedation or local anesthesia, diminishing hospital stays and accelerating patient mobilization.
  • Lower Risk of Overheating: With regulated temperature control, surrounding bone and spinal cord are less prone to thermal injury.
  • Enhanced Synergy: Post-ablation, vertebral augmentation (e.g., cementoplasty) can further stabilize the spine if needed.
  • Radioscopic/Fluoroscopic Guidance: Ensures precise probe positioning and continuous observation of the ablation process, improving operator confidence and patient safety.
  • Controlled Approach: Suitable for metastatic disease in the vertebral body, pedicle, or accessory spinal regions.
  • No External Introducer: Single 17 G access route can be withdrawn promptly following ablation—helping reduce procedural complexity and infection risk.
  • Immediate Assessment: Intra- or post-procedure imaging can quickly confirm ablation zone coverage, providing data for possible second-round ablation if needed.
  • Pain Relief: Targeted ablation of tumor tissue can reduce pain and restore some stability to compromised vertebrae.
  • Minimally Invasive: Often performed under sedation or local anesthesia, diminishing hospital stays and accelerating patient mobilization.
  • Lower Risk of Overheating: With regulated temperature control, surrounding bone and spinal cord are less prone to thermal injury.
  • Enhanced Synergy: Post-ablation, vertebral augmentation (e.g., cementoplasty) can further stabilize the spine if needed.
  • Radioscopic/Fluoroscopic Guidance: Ensures precise probe positioning and continuous observation of the ablation process, improving operator confidence and patient safety.
  • Controlled Approach: Suitable for metastatic disease in the vertebral body, pedicle, or accessory spinal regions.
  • No External Introducer: Single 17 G access route can be withdrawn promptly following ablation—helping reduce procedural complexity and infection risk.
  • Immediate Assessment: Intra- or post-procedure imaging can quickly confirm ablation zone coverage, providing data for possible second-round ablation if needed.